Coset vertex operator algebras and W-algebras of A-type

Autor: Cuipo Jiang, Tomoyuki Arakawa
Rok vydání: 2017
Předmět:
Zdroj: Science China Mathematics. 61:191-206
ISSN: 1869-1862
1674-7283
DOI: 10.1007/s11425-017-9161-7
Popis: We give an explicit description for a weight three generator of the coset vertex operator algebra $C_{L_{\widehat{\sl_{n}}}(l,0)\otimes~L_{\widehat{\sl_{n}}}(1,0)}(L_{\widehat{\sl_{n}}}(l+1,0))$, for $n\geq~2$, $l\geq~1$. Furthermore, we prove that the commutant $C_{L_{\widehat{\sl_{3}}}(l,0)\otimes~L_{\widehat{\sl_{3}}}(1,0)}(L_{\widehat{\sl_{3}}}(l+1,0))$ is isomorphic to the $\W$-algebra $\W_{-3+\frac{l+3}{l+4}}(\sl_3)$, which confirms the conjecture for the $\sl_3$ casethat $C_{L_{\widehat{\frak~g}}(l,0)\otimes~L_{\widehat{\frak~g}}(1,0)}(L_{\widehat{\frak~g}}(l+1,0))$ is isomorphic to$\W_{-h+\frac{l+h}{l+h+1}}(\frak~g)$ for simply-laced Lie algebras ${\frak~g}$ with its Coxeter number $h$ for a positive integer $l$.
Databáze: OpenAIRE