An assay for botulinum toxin types A, B and F that requires both functional binding and catalytic activities within the neurotoxin

Autor: Clifford C. Shone, E. R. Evans, Philip Skipper
Rok vydání: 2009
Předmět:
Zdroj: Journal of Applied Microbiology. 107:1384-1391
ISSN: 1364-5072
DOI: 10.1111/j.1365-2672.2009.04325.x
Popis: Aim To develop a novel assay technique for the botulinum neurotoxin family (BoNTs) which is dependent on both the endopeptidase and receptor-binding activities of the BoNTs and which is insensitive to antigenic variation with the toxin family. Methods and results An endopeptidase activity, receptor-binding assay (EARB assay) has been developed which captures biologically active toxin from media using brain synaptosomes. After capture, the bound toxin can be incubated with its substrate, and cleavage detected using serotype-specific antibodies raised against the cleaved product of each toxin serotype. The EARB assay was assessed using a range of BoNT serotypes and subtypes. For BoNT/A, detection limits for subtypes A(1), A(2) and A(3) were 0.5, 3 and 10 MLD(50) ml(-1), respectively. The limit of detection for BoNT/B(1) was 5 MLD(50) ml(-1) and a novel antibody-based endopeptidase assay for BoNT/F detected toxin at 0.5 MLD(50) ml(-1). All these BoNTs can be captured from media containing up to 10% serum without loss of sensitivity. BoNT/A(1) could also be detected in dilutions of a lactose- containing formulation similar to that used for clinical preparations of the toxin. Different serotypes were found to possess different optimal cleavage pHs (pH 6.5 for A(1), pH 7.4 for B(1)). Conclusions The EARB assay has been shown to be able to detect a broad range of BoNT serotypes and subtypes from various media. Significance and impact of the study The EARB assay system described is the first convenient in vitro assay system described which is requires multiple functional biological activities with the BoNTs. The assay will have applications in instances where it is essential or desirable to distinguish biologically active from inactive neurotoxin.
Databáze: OpenAIRE