Self-Propelled Micromotors Monitored by Particle-Electrode Impact Voltammetry
Autor: | Martin Pumera, James Guo Sheng Moo |
---|---|
Rok vydání: | 2016 |
Předmět: |
Fluid Flow and Transfer Processes
Materials science Process Chemistry and Technology Bioengineering Nanotechnology 02 engineering and technology Electrode interface 010402 general chemistry 021001 nanoscience & nanotechnology Tracking (particle physics) 01 natural sciences 0104 chemical sciences Diffusion layer Self propulsion Micromotor Electrode Particle 0210 nano-technology Instrumentation Voltammetry |
Zdroj: | ACS Sensors. 1:949-957 |
ISSN: | 2379-3694 |
DOI: | 10.1021/acssensors.6b00314 |
Popis: | Self-propelled micromotors, as the next frontier of smart miniaturized machines, are able to carry out a plethora of tasks and operations. To date, the evaluation of their capabilities and behavior has been carried out by optical microscopy coupled with computationally intensive imaging software. The use of particle-electrode impact voltammetry serves as an alternative means of quantifying and qualifying their locomotion. Perturbances of the diffusion layer at the electrode interface from the locomotion of the micromotor in solution resulted in spikes that were recorded by electrochemical signals. The number of micromotors and velocities of these self-propelled objects could be evaluated and examined in real-time in situ. This phenomenon was illustrated with Janus silver micromotors and tubular Cu/Pt micromotors. An on-site tracking of self-powered miniaturized entities propagating in solution serves as an alternative means for monitoring during their operations in environmental and biological applications. |
Databáze: | OpenAIRE |
Externí odkaz: |