On the geometrical properties of hypercomplex four-dimensional Lie groups
Autor: | Mansour Aghasi, Mehri Nasehi |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Georgian Mathematical Journal. 27:111-120 |
ISSN: | 1572-9176 1072-947X |
DOI: | 10.1515/gmj-2018-0003 |
Popis: | In this paper, we first classify Einstein-like metrics on hypercomplex four-dimensional Lie groups. Then we obtain the exact form of all harmonic maps on these spaces. We also calculate the energy of an arbitrary left-invariant vector field X on these spaces and determine all critical points for their energy functional restricted to vector fields of the same length. Furthermore, we give a complete and explicit description of all totally geodesic hypersurfaces of these spaces. The existence of Einstein hypercomplex four-dimensional Lie groups and the non-existence of non-trivial left-invariant Ricci and Yamabe solitons on these spaces are also proved. |
Databáze: | OpenAIRE |
Externí odkaz: |