Joint Angle and Range Estimation for Frequency Diverse Array Using Multi-layer Perceptron Neural Network

Autor: Deping Xia, Tianfang Chen
Rok vydání: 2019
Předmět:
Zdroj: ICCT
DOI: 10.1109/icct46805.2019.8947138
Popis: This paper proposes a joint angle and range estimation method for frequency diverse array (FDA) using multi-layer perceptron (MLP) neural network. Signal data generated by ideal FDA radar system model are used to construct the MLP model. Through experimental evaluation, the performance of the trained MLP neural network is demonstrated.
Databáze: OpenAIRE