A Reverse Rogers–Shephard Inequality for Log-Concave Functions
Autor: | David Alonso-Gutiérrez |
---|---|
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
Inequality Concave function media_common.quotation_subject 010102 general mathematics Regular polygon 01 natural sciences symbols.namesake Differential geometry Fourier analysis 0103 physical sciences symbols 010307 mathematical physics Geometry and Topology 0101 mathematics media_common Mathematics Volume (compression) |
Zdroj: | The Journal of Geometric Analysis. 29:299-315 |
ISSN: | 1559-002X 1050-6926 |
DOI: | 10.1007/s12220-018-9991-8 |
Popis: | We will prove a reverse Rogers–Shephard inequality for log-concave functions. In some particular cases, the method used for general log-concave functions can be slightly improved, allowing us to prove volume estimates for polars of $$\ell _p$$ -diferences of convex bodies under the condition that their polar bodies have opposite barycenters. |
Databáze: | OpenAIRE |
Externí odkaz: |