Anisotropic Nonconforming $${ EQ}_1^{rot}$$ Quadrilateral Finite Element Approximation to Second Order Elliptic Problems
Autor: | Jin-huan Chen, Chao Xu, Dongyang Shi |
---|---|
Rok vydání: | 2013 |
Předmět: |
Numerical Analysis
Quadrilateral Applied Mathematics General Engineering Geometry Finite element method Mathematics::Numerical Analysis Theoretical Computer Science Computational Mathematics Computational Theory and Mathematics Anisotropic meshes Norm (mathematics) Applied mathematics Anisotropy Software Mathematics |
Zdroj: | Journal of Scientific Computing. 56:637-653 |
ISSN: | 1573-7691 0885-7474 |
DOI: | 10.1007/s10915-013-9690-3 |
Popis: | The main aim of this paper is to study the nonconforming $$EQ_1^{rot}$$ quadrilateral finite element approximation to second order elliptic problems on anisotropic meshes. The optimal order error estimates in broken energy norm and $$L^2$$ -norm are obtained, and three numerical experiments are carried out to confirm the theoretical results. |
Databáze: | OpenAIRE |
Externí odkaz: |