Numerical Solution of Nonlinear System of Partial Differential Equations by the Laplace Decomposition Method and the Pade Approximation
Autor: | Magdy Ahmed Mohamed, Mohamed Shibl Torky |
---|---|
Rok vydání: | 2013 |
Předmět: |
Nonlinear system
Nonlinear Sciences::Exactly Solvable and Integrable Systems Partial differential equation Laplace transform Laplace transform applied to differential equations Mathematical analysis Reaction–diffusion system Padé approximant Decomposition method (queueing theory) General Medicine Korteweg–de Vries equation Nonlinear Sciences::Pattern Formation and Solitons Mathematics |
Zdroj: | American Journal of Computational Mathematics. :175-184 |
ISSN: | 2161-1211 2161-1203 |
DOI: | 10.4236/ajcm.2013.33026 |
Popis: | In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade approximant are compared with corresponding exact analytical solutions. |
Databáze: | OpenAIRE |
Externí odkaz: |