Fractional Elementary Bicomplex Functions in the Riemann–Liouville Sense
Autor: | Nicolás Coloma, Antonio Di Teodoro, Diego Ochoa-Tocachi, Francisco Ponce |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Basis (linear algebra) Mathematics::Complex Variables Applied Mathematics Derivative Exponential function Nonlinear Sciences::Exactly Solvable and Integrable Systems Operator (computer programming) Mathematics::K-Theory and Homology Elementary function Development (differential geometry) Trigonometry Laplace operator Mathematics |
Zdroj: | Advances in Applied Clifford Algebras. 31 |
ISSN: | 1661-4909 0188-7009 |
DOI: | 10.1007/s00006-021-01165-0 |
Popis: | In this paper, we present the development of fractional bicomplex calculus in the Riemann–Liouville sense, based on the modification of the Cauchy–Riemann operator using the one-dimensional Riemann–Liouville derivative in each direction of the bicomplex basis. We introduce elementary functions such as analytic polynomials, exponential, trigonometric, and some properties of these functions. Furthermore, we present the fractional bicomplex Laplace operator connected with the fractional Cauchy–Riemann operator. |
Databáze: | OpenAIRE |
Externí odkaz: |