Modeling daily guest count prediction

Autor: An Aijun, Li Jiye, Fok Ricky, Lasek Agnieszka
Rok vydání: 2017
Předmět:
Zdroj: Big Data and Information Analytics. 1:299-308
ISSN: 2380-6966
DOI: 10.3934/bdia.2016012
Popis: We present a novel method for analyzing data with temporal variations. In particular, the problem of modeling daily guest count forecast for a restaurant with more than 60 chain stores is presented. We study the transaction data collected from each store, perform data preprocessing and feature constructions for the data. We then discuss different forecasting techniques based on data mining and machine learning techniques. A new modeling algorithm SW-LAR-LASSO is proposed. We compare multiple regression model, poisson regression model, and the proposed SW-LAR-LASSO model for prediction. Experimental results show that the approach of combining sliding windows and LAR-LASSO produces the best results with the highest precision. This approach can also be applied to other areas where temporal variations exist in the data.
Databáze: OpenAIRE