Shear Bond Strength of Two Self-Etching Adhesives to Air-Abraded Dentin: An in Vitro Study

Autor: Timur Melkumyan, Shahnoza Musashaykhova, Zurab Khabadze, Maria Makeeva, Marina Dashtieva, Diloro Kakhkharova, Angela Dadamova
Rok vydání: 2022
Předmět:
Zdroj: International Journal of Biomedicine. 12:591-595
ISSN: 2158-0529
2158-0510
Popis: Background: The aim of this research was to study the effect of air-abrasive treatment of dentin on the chemical composition of its surface and the adhesion strength of 2 self-etching adhesive systems (AS). Methods and Results: Powders based on aluminum oxide (Al2O3) (27µm) (KaVo, Biberach, Germany), sodium bicarbonate (NaHCO3) (40µm) (AIR-FlOW Classic Comfort, EMS, Nyon, Switzerland), and erythritol (14µm) (AIR-FLOW Plus, EMS, Nyon, Switzerland) were used for the air-abrasive treatment of adhesive surfaces. Bonding steps were carried out with Single Bond Universal (SBU) (3M ESPE, USA) and Bond Force 2 (BF2) (Toquyama, Japan). The adhesion strength of composite to dentin was evaluated on 80 samples prepared in accordance with the Ultradent Shear Bond Strength test. All samples were divided into 4 groups depending on the method of dentin surface processing. In the samples of Group 1 (n=20), aluminum oxide was used for the air-abrasive treatment of dentin. In Group 2 (n=20) and Group 3 (n=20), samples were treated using powders based on sodium bicarbonate and erythritol, respectively. Group 4 (control, n=20) included tooth samples in which the dentin surface was not air-abraded after preparation with carbide burs. Then, each group was divided into 2 subgroups (Sub-A and Sub-B) depending on the type of adhesive system used. Adhesive resin was applied and polymerized in accordance with the manufacturer’s instructions. Single Bond Universal (SBU) was used for the samples of Sub-A, and Bond Force 2 (BF2) (Toquyama, Japan) was used for the samples of Sub-B. Scanning electron microscopy and determining the surface elemental composition of samples were carried out on an SEM-EVO MA 10 (Carl Zeiss) and energy dispersive X-ray spectrometer with EDS Aztec Energy Advanced X-Act (Oxford Instruments). It was concluded that air-abrasive treatment of the dentin surface does not enhance the adhesion strength of composite material when using self-etch AS. Also, it was noted that the pH level of self-etch AS is not a crucial feature in determining the strength of the filling-tooth interface. The resulting variations in the elemental composition of dentin surface after air-abrasion with various mixtures and their effect on the efficacy of the different AS require further in vitro studies.
Databáze: OpenAIRE