A generalization of the Carleson lemma and weighted norm inequalities for the maximal functions in the Orlicz setting
Autor: | Benoît F. Sehba, Justin Feuto, J.M. Tanoh Dje |
---|---|
Rok vydání: | 2020 |
Předmět: |
Mathematics::Functional Analysis
Pure mathematics Applied Mathematics 010102 general mathematics Mathematics::Classical Analysis and ODEs Regular polygon 01 natural sciences 010101 applied mathematics Growth function Norm (mathematics) Embedding Maximal function 0101 mathematics Analysis Mathematics |
Zdroj: | Journal of Mathematical Analysis and Applications. 491:124248 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2020.124248 |
Popis: | In this note we introduce the notion of Φ-Carleson sequence for Φ a convex growth function and provide an equivalent characterization that is an extension of the off-diagonal Carleson embedding lemma. We apply this result to obtain Sawyer-type characterization and two-weight norm estimates for some maximal functions between different Orlicz spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |