Spectral properties of ordinary differential operators admitting special decompositions

Autor: Krzysztof Stempak
Rok vydání: 2021
Předmět:
Zdroj: Communications on Pure & Applied Analysis.
ISSN: 1553-5258
DOI: 10.3934/cpaa.2021054
Popis: We investigate spectral properties of ordinary differential operators related to expressions of the form \begin{document}$ D^{\epsilon}+a $\end{document} . Here \begin{document}$ a\in \mathbb{R} $\end{document} and \begin{document}$ D^{\epsilon} $\end{document} denotes a composition of \begin{document}$ \mathfrak{d} $\end{document} and \begin{document}$ \mathfrak{d}^+ $\end{document} according to the signs in the multi-index \begin{document}$ {\epsilon} $\end{document} , where \begin{document}$ \mathfrak{d} $\end{document} is a first order linear differential expression, called delta-derivative, and \begin{document}$ \mathfrak{d}^+ $\end{document} is its formal adjoint in an appropriate \begin{document}$ L^2 $\end{document} space. In particular, Sturm-Liouville operators that admit the decomposition of the type \begin{document}$ \mathfrak{d}^+\mathfrak{d}+a $\end{document} are considered. We propose an approach, based on weak delta-derivatives and delta-Sobolev spaces, which is particularly useful in the study of the operators \begin{document}$ D^{\epsilon}+a $\end{document} . Finally we examine a number of examples of operators, which are of the relevant form, naturally arising in analysis of classical orthogonal expansions.
Databáze: OpenAIRE