Commutativity in a synaptic algebra
Autor: | Sylvia Pulmannová, David J. Foulis |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Mathematica Slovaca. 66:469-482 |
ISSN: | 1337-2211 0139-9918 |
Popis: | A synaptic algebra is a generalization of the self-adjoint part of a von Neumann algebra. For a synaptic algebra we study two weakened versions of commutativity, namely quasi-commutativity and operator commutativity, and we give natural conditions on the synaptic algebra so that each of these conditions is equivalent to commutativity. We also investigate the structure of a commutative synaptic algebra, prove that a synaptic algebra is commutative if and only if it is a vector lattice, and provide a functional representation for a commutative synaptic algebra. |
Databáze: | OpenAIRE |
Externí odkaz: |