Commutativity in a synaptic algebra

Autor: Sylvia Pulmannová, David J. Foulis
Rok vydání: 2016
Předmět:
Zdroj: Mathematica Slovaca. 66:469-482
ISSN: 1337-2211
0139-9918
Popis: A synaptic algebra is a generalization of the self-adjoint part of a von Neumann algebra. For a synaptic algebra we study two weakened versions of commutativity, namely quasi-commutativity and operator commutativity, and we give natural conditions on the synaptic algebra so that each of these conditions is equivalent to commutativity. We also investigate the structure of a commutative synaptic algebra, prove that a synaptic algebra is commutative if and only if it is a vector lattice, and provide a functional representation for a commutative synaptic algebra.
Databáze: OpenAIRE