Strategies for supplementing recurrent neural network training for spatio-temporal prediction

Autor: Stefan Elser, Markus Reischl, Ralf Mikut, Mark Schutera, Jochen Abhau
Rok vydání: 2019
Předmět:
Zdroj: at - Automatisierungstechnik. 67:545-556
ISSN: 2196-677X
0178-2312
Popis: In autonomous driving, prediction tasks address complex spatio-temporal data. This article describes the examination of Recurrent Neural Networks (RNNs) for object trajectory prediction in the image space. The proposed methods enhance the performance and spatio-temporal prediction capabilities of Recurrent Neural Networks. Two different data augmentation strategies and a hyperparameter search are implemented for this purpose. A conventional data augmentation strategy and a Generative Adversarial Network (GAN) based strategy are analyzed with respect to their ability to close the generalization gap of Recurrent Neural Networks. The results are then discussed using single-object tracklets provided by the KITTI Tracking Dataset. This work demonstrates the benefits of augmenting spatio-temporal data with GANs.
Databáze: OpenAIRE