Parametric Modeling and Optimal Control of a Combined Heating and Power System With Energy Storage

Autor: Stephanie Stockar, Claudia Lucia De Pascalis
Rok vydání: 2020
Předmět:
Zdroj: Volume 1: Adaptive/Intelligent Sys. Control; Driver Assistance/Autonomous Tech.; Control Design Methods; Nonlinear Control; Robotics; Assistive/Rehabilitation Devices; Biomedical/Neural Systems; Building Energy Systems; Connected Vehicle Systems; Control/Estimation of Energy Systems; Control Apps.; Smart Buildings/Microgrids; Education; Human-Robot Systems; Soft Mechatronics/Robotic Components/Systems; Energy/Power Systems; Energy Storage; Estimation/Identification; Vehicle Efficiency/Emissions.
DOI: 10.1115/dscc2020-3184
Popis: Cogeneration is a well-known and cost effective solution for generating power and heat within the same plant, leading to improved overall efficiency and reduced generation cost. Combined heating and power systems can facilitate the penetration of renewable energy sources in medium size applications through the integration of electric and thermal energy storage units. Due to the complexity of the plant as well as significantly variability in power demand and generation, the design and operation of such systems requires a systematic co-optimization of plant and controller for guaranteeing near optimal performance. In this scenario, this paper presents a physics-based parametric modeling approach for the characterization of the main components of a 1MW combined heating and power system that includes renewable sources, electric and thermal storage devices. To demonstrate the model flexibility and potential benefits achieved by an optimal sizing, the system energy management is optimized using Dynamic Programming. The operational costs for different configurations are compared showing that an optimization of the energy management strategy in conjunction with an improved system sizing lead to more than 6% of reduction in the operational cost.
Databáze: OpenAIRE