A review on the use of sensors to monitor cattle jaw movements and behavior when grazing

Autor: Andriamandroso*, Andriamasinoro Lalaina Herinaina, Bindelle*, Jérôme, Mercatoris, Benoît, Lebeau, Frédéric
Jazyk: angličtina
Rok vydání: 2016
Předmět:
DOI: 10.25518/1780-4507.13058
Popis: Introduction. Precision Livestock Farming (PLF) is spreading rapidly in intensive cattle farms. It is based on the monitoring of individuals using different kinds of sensors. Applied to grazing animals, PLF is mainly based on the recording of three parameters: the location, the posture and the movements of the animal. Until now, several techniques have been used to discriminate grazing and ruminating behaviors with accuracies over 90% on average, when compared to observations, providing valuable tools to improve the management of pasture and grazing animals. However, bites and jaw movements are still overlooked, even though they are of utmost importance to assess the animal grazing strategies for various pasture types and develop future techniques allowing better estimation of their intake. Literature. The goal of this review is to explore the possibility of monitoring the individual jaw movements and the differentiation of bites in grazing animals. For this purpose, (1) the mechanisms of forage intake in cattle are explained briefly in order to understand the movements performed by the cow, especially during grazing, (2) the various sensors that have been proposed to monitor jaw movements of ruminants such as mechanical sensors (pressure sensors), acoustic sensors (microphone) and electromyography sensors are compared and (3) finally the relationship between jaw movements, biting behavior and forage intake is discussed.Conclusions. The review clearly demonstrated the abilities of mechanical, acoustic and electromyography sensors to classify the difference types of jaw movements. However, it also indicated a wide range of accuracies and different observation windows required to reach these accuracies when compared to the observed movement. This classification purpose could lead to a better detection of more specific behavior, e.g. bite detection, and their exact location on pasture.
Synthèse sur l’utilisation de capteurs pour le suivi des mouvements de mâchoire et du comportement de bovins au pâturageIntroduction. L’élevage de précision se répand rapidement au niveau des exploitations bovines de type intensif. Il utilise différents capteurs pour suivre chaque individu présent dans le troupeau. Pour les ruminants au pâturage, le système est basé sur l’enregistrement de trois paramètres : leur localisation, leur posture et leurs mouvements. Les techniques actuelles permettent de détecter les comportements de pâturage et de rumination avec une précision moyenne supérieure ou égale à 90 %, comparée aux observations. Ces techniques peuvent fournir des outils intéressants pour améliorer la gestion de la prairie et des animaux. Cependant, la caractérisation des mouvements de la mâchoire et des bouchées reste souvent négligée, sachant que ces paramètres peuvent être très importants pour évaluer les stratégies de pâturage des animaux et pour espérer estimer la quantité de fourrage ingérée. Littérature. L’objectif de cette synthèse est de discuter des techniques utilisées pour la caractérisation et la classification des mouvements de la mâchoire ainsi que des bouchées chez les ruminants. Pour cela, (1) les mécanismes d’ingestion de fourrage des bovins sont d’abord brièvement expliqués, ensuite (2) les différents types de capteurs utilisés pour détecter les mouvements de la mâchoire, tels que les capteurs de pression, accéléromètre, microphones et capteurs électromyographiques, sont décrits et comparés, et (3) les éventuels liens entre les mouvements de la mâchoire, la bouchée et le fourrage ingéré sont discutés en se basant sur les résultats de recherche déjà effectués dans ce domaine.Conclusions. La conclusion de cette synthèse est que les capteurs mécaniques, acoustiques et électromyographiques ont montré leur capacité à classifier les différents types de mouvements de la mâchoire avec différentes précisions et différentes fenêtres de temps nécessaires pour cette classification. Cette classification pourrait mener à une meilleure détection de comportements plus précis telle que la détection des bouchées et leur localisation sur le parcours.
Databáze: OpenAIRE