Global and Local Information Based Spherical Marginal Fisher Analysis for Face Recognition

Autor: Mingzhi Qu, Chengcheng Jia, Shuchao Pang, Erping Pang, Rui Liu, Zhezhou Yu
Rok vydání: 2013
Předmět:
Zdroj: Journal of Information and Computational Science. 10:1025-1034
ISSN: 1548-7741
Popis: We proposed a new face recognition algorithm, termed Spherical Marginal Fisher Analysis (SMFA). Different from traditional Marginal Fisher Analysis (MFA) in which we don’t select a certain number of nearest samples between different classes, but contain all the needed samples in some content. Meanwhile, we add the information between sample centers as applied in Linear Discriminant Analysis (LDA). Experimental results on the ORL and Yale face databases show our method outperforms other linear methods.
Databáze: OpenAIRE