The weak asymptotic equivalence and the generalized inverse
Autor: | Aleksandar Torgašev, Dragan Djurcic, Rale M. Nikolić |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Lithuanian Mathematical Journal. 50:34-42 |
ISSN: | 1573-8825 0363-1672 |
DOI: | 10.1007/s10986-010-9069-1 |
Popis: | In this paper, we discuss the relationship between the weak asymptotic equivalence relation and the generalized inverse in the class \({\mathcal{A}} \) of all nondecreasing and unbounded functions, defined and positive on a half-axis [a,+∞) (a > 0). In the main theorem, we prove a proper characterization of the functional class \({{ORV} \cap \mathcal{A}} \), where ORV is the class of all \({\mathcal{O}} \)-regularly varying functions (in the sense of Karamata). |
Databáze: | OpenAIRE |
Externí odkaz: |