The weak asymptotic equivalence and the generalized inverse

Autor: Aleksandar Torgašev, Dragan Djurcic, Rale M. Nikolić
Rok vydání: 2010
Předmět:
Zdroj: Lithuanian Mathematical Journal. 50:34-42
ISSN: 1573-8825
0363-1672
DOI: 10.1007/s10986-010-9069-1
Popis: In this paper, we discuss the relationship between the weak asymptotic equivalence relation and the generalized inverse in the class \({\mathcal{A}} \) of all nondecreasing and unbounded functions, defined and positive on a half-axis [a,+∞) (a > 0). In the main theorem, we prove a proper characterization of the functional class \({{ORV} \cap \mathcal{A}} \), where ORV is the class of all \({\mathcal{O}} \)-regularly varying functions (in the sense of Karamata).
Databáze: OpenAIRE