Magneto-transport properties of B-, Si- and N-doped graphene
Autor: | Ming-Fa Lin, Po Hsin Shih, Thanh Phong Pham, Godfrey Gumbs, Danhong Huang, Thi-Nga Do |
---|---|
Rok vydání: | 2020 |
Předmět: |
Materials science
Condensed matter physics Dopant Graphene Band gap Doping 02 engineering and technology General Chemistry Landau quantization Conductivity Condensed Matter::Mesoscopic Systems and Quantum Hall Effect 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Spectral line 0104 chemical sciences law.invention law Kubo formula General Materials Science 0210 nano-technology |
Zdroj: | Carbon. 160:211-218 |
ISSN: | 0008-6223 |
DOI: | 10.1016/j.carbon.2019.12.088 |
Popis: | The effect due to doping by B, Si, N atoms on the magneto-transport properties of graphene is investigated using the generalized tight-binding model in conjunction with the Kubo formula. The crucial electronic and transport properties are greatly diversified by different types of dopant and doping concentrations. The effect of these guest atoms includes opening a band gap, thereby giving rise to rich Landau level energy spectra and consequently a unique quantum-Hall conductivity. The Fermi-energy dependent quantum-Hall effect appears as a step structure having both integer and half-integer plateaus. Doping with Si leads to an occurrence of a zero quantum-Hall conductivity, unlike the plateau sequence for pristine graphene. The predicted dopant- and concentration-enriched quantum-Hall effect for doped graphene can provide useful information for magneto-transport measurements, possible technological and even metrology applications. |
Databáze: | OpenAIRE |
Externí odkaz: |