Aquaporin-Based Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology: Approaches and Challenges

Autor: Chil-Hung Cheng, Huu Doan, Ali Lohi, Amira Abdelrasoul
Rok vydání: 2018
Předmět:
Zdroj: Polymer Science, Series A. 60:429-450
ISSN: 1555-6107
0965-545X
DOI: 10.1134/s0965545x18040016
Popis: Biomimetic and bioinspired membranes are the efficient membrane technology when it comes to multiple usage scenarios, including next generations of biomaterials within the commercial separation applications, as well as, water and wastewater treatment technologies. In recent years, aquaporin biomimetic membranes for water separation have raised considerable interest. These membranes have displayed distinguished properties and outstanding performances, as diverse interactions, varying selective transport mechanisms, superior stability, maximum resistance to membrane fouling, and distinct adaptability. The biomimetic membranes have made significant contributions when it comes to water stress, environmental threats and energy. It has the potential to produce clean water more efficiently than reverse osmosis membranes (RO), while saving up to 80% of the energy used for desalination processes. More than half of the 15000 desalination plants around the world utilize RO technologies, and the implementation of biomimetic membranes on a large scale could save hundreds of millions of dollars in energy cost annually (potential savings of $1.45 million/year for 100 ML/day desalination plant). This paper discusses the interplay of the main components of aquaporin biomimetic membranes: aquaporin proteins, block copolymers for aquaporin proteins reconstitution, and polymer-based supporting structures. We focus specifically on the challenges and review recent developments on the interplay between aquaporin proteins and block copolymers. The recent efforts in embedding reconstituted aquaporin proteins in membrane designs that are based on conventional thin film interfacial polymerization techniques are evaluated. In addition, emerging challenges and opportunities for biomimetic membranes are studied from the perspective of current and future applications.
Databáze: OpenAIRE