Alcove random walks, k-Schur functions and the minimal boundary of the k-bounded partition poset

Autor: Pierre Tarrago, Cédric Lecouvey
Rok vydání: 2021
Předmět:
Zdroj: Algebraic Combinatorics. 4:241-272
ISSN: 2589-5486
DOI: 10.5802/alco.147
Popis: We use k-Schur functions to get the minimal boundary of the k-bounded partition poset. This permits to describe the central random walks on affine Grassmannian elements of type A and yields a polynomial expression for their drift. We also recover Rietsch's parametriza-tion of totally nonnegative unitriangular Toeplitz matrices without using quantum cohomology of flag varieties. All the homeomorphisms we define can moreover be made explicit by using the combinatorics of k-Schur functions and elementary computations based on Perron-Frobenius theorem.
Databáze: OpenAIRE