The Oka principle for holomorphic Legendrian curves in $$\mathbb {C}^{2n+1}$$ C 2 n + 1

Autor: Franc Forstneric, Finnur Larusson
Rok vydání: 2017
Předmět:
Zdroj: Mathematische Zeitschrift. 288:643-663
ISSN: 1432-1823
0025-5874
DOI: 10.1007/s00209-017-1904-1
Popis: Let M be a connected open Riemann surface. We prove that the space \(\mathscr {L}(M,\mathbb {C}^{2n+1})\) of all holomorphic Legendrian immersions of M to \(\mathbb {C}^{2n+1}\), \(n\ge 1\), endowed with the standard holomorphic contact structure, is weakly homotopy equivalent to the space \(\mathscr {C}(M,\mathbb {S}^{4n-1})\) of continuous maps from M to the sphere \(\mathbb {S}^{4n-1}\). If M has finite topological type, then these spaces are homotopy equivalent. We determine the homotopy groups of \(\mathscr {L}(M,\mathbb {C}^{2n+1})\) in terms of the homotopy groups of \(\mathbb {S}^{4n-1}\). It follows that \(\mathscr {L}(M,\mathbb {C}^{2n+1})\) is \((4n-3)\)-connected.
Databáze: OpenAIRE