A multi-symplectic numerical integrator for the two-component Camassa–Holm equation
Autor: | Takayasu Matsuo, Xavier Raynaud, David Cohen |
---|---|
Rok vydání: | 2021 |
Předmět: |
Conservation law
Camassa–Holm equation Discretization 010102 general mathematics Mathematical analysis Statistical and Nonlinear Physics 01 natural sciences Casimir effect symbols.namesake Integrator 0103 physical sciences Euler's formula symbols 010307 mathematical physics 0101 mathematics Hamiltonian (quantum mechanics) Mathematical Physics Mathematics Symplectic geometry |
Zdroj: | Journal of Nonlinear Mathematical Physics. 21:442 |
ISSN: | 1776-0852 |
Popis: | A new multi-symplectic formulation of the two-component Camassa-Holm equation (2CH) is presented, and the associated local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. A multi-symplectic discretisation based on this new formulation is exemplified by means of the Euler box scheme. Furthermore, this scheme preserves exactly two discrete versions of the Casimir functions of 2CH. Numerical experiments show that the proposed numerical scheme has good conservation properties. |
Databáze: | OpenAIRE |
Externí odkaz: |