Poster

Autor: Mohammad Saidur Rahman, Matthew Wright, Nate Mathews
Rok vydání: 2019
Předmět:
Zdroj: CCS
DOI: 10.1145/3319535.3363272
Popis: The website fingerprinting attack allows a low-resource attacker to compromise the privacy guarantees provided by privacy enhancing tools such as Tor. In response, researchers have proposed defenses aimed at confusing the classification tools used by attackers. As new, more powerful attacks are frequently developed, raw attack accuracy has proven inadequate as the sole metric used to evaluate these defenses. In response, two security metrics have been proposed that allow for evaluating defenses based on hand-crafted features often used in attacks. Recent state-of-the-art attacks, however, use deep learning models capable of automatically learning abstract feature representations, and thus the proposed metrics fall short once again. In this study we examine two security metrics and (1) show how these methods can be extended to evaluate deep learning-based website fingerprinting attacks, and (2) compare the security metrics and identify their shortcomings.
Databáze: OpenAIRE