A new Carleson measure adapted to multi-level ellipsoid covers
Autor: | Ankang Yu, Baode Li, Yajuan Yang |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Communications on Pure & Applied Analysis. 20:3481 |
ISSN: | 1553-5258 1534-0392 |
Popis: | We develop highly anisotropic Carleson measure over multi-level ellipsoid covers \begin{document}$ \Theta $\end{document} of \begin{document}$ \mathbb{R}^n $\end{document} that are highly anisotropic in the sense that the ellipsoids can change rapidly from level to level and from point to point. Then we show that the Carleson measure \begin{document}$ \mu $\end{document} is sufficient for which the integral defines a bounded operator from \begin{document}$ H^p(\Theta) $\end{document} to \begin{document}$ L^p(\mathbb{R}^{n+1}, \, \mu),\ 0. Finally, we give several equivalent Carleson measures adapted to multi-level ellipsoid covers and obtain a specific Carleson measure induced by the highly anisotropic BMO functions. |
Databáze: | OpenAIRE |
Externí odkaz: |