On mod local-global compatibility for in the ordinary case
Autor: | Daniel Le, Florian Herzig, Stefano Morra |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Compositio Mathematica. 153:2215-2286 |
ISSN: | 1570-5846 0010-437X |
DOI: | 10.1112/s0010437x17007357 |
Popis: | Suppose that $F/F^{+}$ is a CM extension of number fields in which the prime $p$ splits completely and every other prime is unramified. Fix a place $w|p$ of $F$. Suppose that $\overline{r}:\operatorname{Gal}(\overline{F}/F)\rightarrow \text{GL}_{3}(\overline{\mathbb{F}}_{p})$ is a continuous irreducible Galois representation such that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ is upper-triangular, maximally non-split, and generic. If $\overline{r}$ is automorphic, and some suitable technical conditions hold, we show that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ can be recovered from the $\text{GL}_{3}(F_{w})$-action on a space of mod $p$ automorphic forms on a compact unitary group. On the way we prove results about weights in Serre’s conjecture for $\overline{r}$, show the existence of an ordinary lifting of $\overline{r}$, and prove the freeness of certain Taylor–Wiles patched modules in this context. We also show the existence of many Galois representations $\overline{r}$ to which our main theorem applies. |
Databáze: | OpenAIRE |
Externí odkaz: |