On a skew McCoy ring
Autor: | Ahmad Moussavi, Rasul Mohammadi, Masoome Zahiri |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Communications in Algebra. 47:4061-4065 |
ISSN: | 1532-4125 0092-7872 |
DOI: | 10.1080/00927872.2019.1576188 |
Popis: | A ring R with an endomorphism σ is called σ-skew McCoy, if for any zero-divisor f(x) in the skew polynomial ring R[x; σ], there exists a nonzero element c∈R with f(x)c = 0. In this note, we show that there exists a ring R and an endomorphism σ such that the matrix ring M2(R) is σ-skew McCoy. This gives a negative answer to the question posed in “A. R. Nasr-Isfahani, On semiprime right Goldie McCoy rings, Commun. Algebra 42 (2014) 1565-1570”. |
Databáze: | OpenAIRE |
Externí odkaz: |