On a skew McCoy ring

Autor: Ahmad Moussavi, Rasul Mohammadi, Masoome Zahiri
Rok vydání: 2019
Předmět:
Zdroj: Communications in Algebra. 47:4061-4065
ISSN: 1532-4125
0092-7872
DOI: 10.1080/00927872.2019.1576188
Popis: A ring R with an endomorphism σ is called σ-skew McCoy, if for any zero-divisor f(x) in the skew polynomial ring R[x; σ], there exists a nonzero element c∈R with f(x)c = 0. In this note, we show that there exists a ring R and an endomorphism σ such that the matrix ring M2(R) is σ-skew McCoy. This gives a negative answer to the question posed in “A. R. Nasr-Isfahani, On semiprime right Goldie McCoy rings, Commun. Algebra 42 (2014) 1565-1570”.
Databáze: OpenAIRE