Popis: |
Humans direct their gaze towards visual objects of interest such that the retinal images of fixated objects fall onto the fovea, a small anatomically and physiologically specialized region of the retina displaying highest visual fidelity. One striking anatomical feature of the fovea is its non-uniform cellular topography, with a steep decline of cone photoreceptor density and outer segment length with increasing distance from its center. We here assessed in how far the specific cellular organization of the foveola is reflected in visual function. Increment sensitivity to small spot visual stimuli (1 x 1 arcmin, 543 nm light) was recorded psychophysically in 4 human participants at 17 locations placed concentric within a 0.2-degree diameter around the preferred retinal locus of fixation with adaptive optics scanning laser ophthalmoscopy based microstimulation. While cone density as well as maximum outer segment length differed significantly among the four tested participants, the range of observed threshold was similar, yielding an average increment threshold of 3.3 ± 0.2 log10 photons at the cornea. Thresholds were correlated with retinal eccentricity, as well as cone density and outer segment length. Biophysical simulation allowed to develop a model of foveal sensitivity based on these parameters, explaining at least 37% of the observed threshold variability. Based on high reproducibility in replicate testing, the residual variability is assumed to be caused by individual cone and bipolar cell weighting at the specific target locations. |