Inverse source problems for the Korteweg–de Vries–Burgers equation with mixed boundary conditions

Autor: Cristhian Montoya
Rok vydání: 2019
Předmět:
Zdroj: Journal of Inverse and Ill-posed Problems. 27:777-794
ISSN: 1569-3945
0928-0219
DOI: 10.1515/jiip-2018-0108
Popis: In this paper, we prove Lipschitz stability results for the inverse source problem of determining the spatially varying factor in a source term in the Korteweg–de Vries–Burgers (KdVB) equation with mixed boundary conditions. More precisely, the Lipschitz stability property is obtained using observation data on an arbitrary fixed sub-domain over a time interval. Secondly, we show that stability property can also be achieved from boundary measurements. Our proofs relies on Carleman inequalities and the Bukhgeim–Klibanov method.
Databáze: OpenAIRE