Inverse source problems for the Korteweg–de Vries–Burgers equation with mixed boundary conditions
Autor: | Cristhian Montoya |
---|---|
Rok vydání: | 2019 |
Předmět: |
0209 industrial biotechnology
Applied Mathematics 010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs Inverse 02 engineering and technology 01 natural sciences Burgers' equation Inverse source problem 020901 industrial engineering & automation Boundary value problem 0101 mathematics Mathematics |
Zdroj: | Journal of Inverse and Ill-posed Problems. 27:777-794 |
ISSN: | 1569-3945 0928-0219 |
DOI: | 10.1515/jiip-2018-0108 |
Popis: | In this paper, we prove Lipschitz stability results for the inverse source problem of determining the spatially varying factor in a source term in the Korteweg–de Vries–Burgers (KdVB) equation with mixed boundary conditions. More precisely, the Lipschitz stability property is obtained using observation data on an arbitrary fixed sub-domain over a time interval. Secondly, we show that stability property can also be achieved from boundary measurements. Our proofs relies on Carleman inequalities and the Bukhgeim–Klibanov method. |
Databáze: | OpenAIRE |
Externí odkaz: |