Popis: |
There is considerable import in creating more complete, better understood, holdings of early meteorological data. Such data permit an improved understanding of climate variability and long-term changes. Early records are particularly incomplete in the tropics, with implications for estimates of global and regional temperature. There is also a relatively low level of scientific understanding of how these measurements were made and, as a result, of their homogeneity and comparability to more modern techniques and measurements. Herein we describe and analyse a newly rescued set of long-term, up to six-way parallel measurements, undertaken over 1884–1903 in Mauritius, an island situated in the southern Indian Ocean. Data include: i) measurements from a well-ventilated room, ii) a shaded Thermograph; iii) instruments housed in a manner broadly equivalent to a modern Stevenson Screen; iv) a set of measurements by a Hygrometer mounted in a Stevenson Screen; and for a very much shorter period v) two additional Stevenson Screen configurations. All measurements were undertaken within roughly 80 metre radius. To our knowledge this is the first such multidecadal multi-instrument assessment of meteorological instrument transition impacts ever undertaken, providing potentially unique insights. The intercomparison also considers the impact of different ways of deriving daily and monthly averages. The long-term comparison is sufficient to robustly characterise systematic offsets between all the instruments and seasonally varying impacts. Differences between all techniques range from tenths of a degree Celsius to in excess of a degree Celsius and are considerably larger for maximum and minimum temperatures than for means or averages. Systematic differences of several tenths of a degree also exist for the different ways of deriving average / mean temperatures. All differences bar two average temperature series pairs are significant at the 0.01 level using a paired t-test. Given that all thermometers were regularly calibrated against a primary Kew standard thermometer this analysis highlights significant impacts of instrument exposure, housing, siting and measurement practices in early meteorological records. These results reaffirm the importance of thoroughly assessing the homogeneity of early meteorological records. |