Red muscle function and thermal acclimation to cold in rainbow smelt,Osmerus mordax, and rainbow trout,Oncorhynchus mykiss
Autor: | Jacie L. Shuman, David J. Coughlin |
---|---|
Rok vydání: | 2018 |
Předmět: |
0106 biological sciences
0301 basic medicine endocrine system animal structures Osmerus Physiology animal diseases Zoology digestive system 010603 evolutionary biology 01 natural sciences Acclimatization Rainbow smelt 03 medical and health sciences Genetics medicine Molecular Biology Ecology Evolution Behavior and Systematics biology urogenital system Muscle mechanics biology.organism_classification Trout 030104 developmental biology Animal Science and Zoology Rainbow trout medicine.symptom Smelt Muscle contraction |
Zdroj: | Journal of Experimental Zoology Part A: Ecological and Integrative Physiology. 329:547-556 |
ISSN: | 2471-5638 |
DOI: | 10.1002/jez.2219 |
Popis: | Climate change affects the thermal environment of aquatic organisms. Changes in the thermal environment may affect muscle function in the eurythermal rainbow smelt, Osmerus mordax, and relatively more stenothermal rainbow trout, Oncorhynchus mykiss. Literature suggests that the trout will be more sensitive to changes in environmental temperature, as they experience a more limited range of environmental temperatures. To examine the effects of thermal environment on red muscle function, both the smelt and trout were thermally acclimated to either a warm (12-15°C) or cold (4-5°C) temperature, after which studies of swimming performance and muscle mechanics were performed. The data on swimming performance and maximum muscle shortening velocity in rainbow smelt were previously published. In both species, cold-acclimated (CA) fish swam with a significantly faster maximum aerobic swimming speed than warm-acclimated fish, when tested at a common temperature of 10°C. Similarly, CA smelt and trout had faster red muscle contraction kinetics. However, smelt displayed a greater shift in contractile properties, such as having a significant shift in maximum muscle shortening velocity that was not observed in trout. The smelt red muscle outperformed trout, with twitch and tetanic times of relaxation being significantly faster for CA smelt compared with CA trout, especially when contraction kinetics were tested at 2°C. The smelt shows a greater thermal acclimation response compared with trout, with more robust increases in maximum swimming speed and faster muscle contractile properties. These differences in acclimation response may contribute to understanding how smelt and trout cope with climate change. |
Databáze: | OpenAIRE |
Externí odkaz: |