A consistent test for heteroscedasticity in semi-parametric regression with nonparametric variance function based on the kernel method

Autor: Jin-Guan Lin, Xiao-Yi Qu
Rok vydání: 2012
Předmět:
Zdroj: Statistics. 46:565-576
ISSN: 1029-4910
0233-1888
DOI: 10.1080/02331888.2010.543464
Popis: It is important to detect the variance heterogeneity in regression models. Heteroscedasticity tests have been well studied in parametric and nonparametric regression models. This paper presents a consistent test for heteroscedasticity for nonlinear semi-parametric regression models with nonparametric variance function based on the kernel method. The properties of the test are investigated through Monte Carlo simulations. The test methods are illustrated with a real example.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje