Nice results about quadratic type functional equations on semigroups

Autor: Driss Zeglami, B. Fadli, A. Akkaoui, M. El Fatini
Rok vydání: 2019
Předmět:
Zdroj: Aequationes mathematicae. 94:83-96
ISSN: 1420-8903
0001-9054
DOI: 10.1007/s00010-019-00653-w
Popis: Let $$(S,+)$$ be an abelian semigroup, let $$\sigma $$ be an involution of S, let X be a linear space over the field $${\mathbb {K}}\in \{{\mathbb {R}},{\mathbb {C}}\}$$ and let $$\mu $$,$$\nu $$ be linear combinations of Dirac measures. In the present paper, we find the general solution $$f:S\rightarrow X$$ of the following functional equation $$\begin{aligned} \int _{S}f(x+y+t)d\mu (t)+\int _{S}f(x+\sigma (y)+t)d\nu (t)=f(x)+f(y), \ \ \ x,y \in S, \end{aligned}$$in terms of additive and bi-additive maps. Many consequences of this result are presented.
Databáze: OpenAIRE