Characterising Forages for Ruminant Feeding
Autor: | R. A. Dynes, D. G. Masters, D. A Henry |
---|---|
Rok vydání: | 2003 |
Předmět: | |
Zdroj: | Asian-Australasian Journal of Animal Sciences. 16:116-123 |
ISSN: | 1976-5517 1011-2367 |
DOI: | 10.5713/ajas.2003.116 |
Popis: | Forages are the most important feed resource for ruminants worldwide, whether fed as pastures, forage crops or conserved hay, silage or haylage. There is large variability in the quality of forages so measurement and prediction of feeding value and nutritive value are essential for high levels of production. Within a commercial animal production system, methods of prediction must be inexpensive and rapid. At least 50% of the variation in feeding value of forages is due to variation in voluntary feed intake. Identification of the factors that constrain voluntary feed intake allows these differences to be managed and exploited in forage selection. Constraints to intake have been predicted using combinations of metabolic and physical factors within the animal while simple measurements such as the energy required to shear the plant material are related to constraints to intake with some plant material. Animals respond to both pre- and post-ingestive feedback signals from forages. Pre-ingestive signals may play a role in intake with signals including taste, odour and texture together with learned aversions to nutrients or toxins (post-ingestive feedback signals). The challenge to forage evaluation is identification of the factors which are most important contributors to these feedback signals. Empirical models incorporating chemical composition are also widely used. The models tend to be useful within the ranges of the datasets used in their development but none can claim to have universal application. Mechanistic models are becoming increasingly complex and sophisticated and incorporate both feed characteristics and use of biochemical pathways within the animal. Improvement in utilisation through the deliberate selection of pasture plants for high feeding value appears to have potential and has been poorly exploited. Use of Near Infrared Reflectance Spectroscopy is a simple method that offers significant potential for the preliminary screening of plants with genetic differences in feeding value. Near Infrared Reflectance Spectroscopy will only be as reliable as the calibration sets from which the equations are generated. (Asian-Aust. J. Anim. Sci. 2003. Vol. 16, No. 1 : 116-123) |
Databáze: | OpenAIRE |
Externí odkaz: |