Influence of Phase Transformations on Residual Stresses in Welded Structures

Autor: Ondrej Muránsky, R J Dennis, Michael Smith, R S Kulka
Rok vydání: 2013
Předmět:
Zdroj: Volume 6B: Materials and Fabrication.
DOI: 10.1115/pvp2013-97684
Popis: A key aspect of any numerical simulation to predict welding induced residual stresses is the development and application of an appropriate material model. Often significant effort is expended characterising the thermal, physical and hardening properties including complex phenomena such as high temperature annealing. Consideration of these aspects is sufficient to produce a realistic prediction for austenitic steels, however ferritic steels are susceptible to solid state phase transformations when heated to high temperatures. On cooling a reverse transformation occurs, with an associated volume change at the isothermal transformation temperature. Although numerical models exist (e.g. Leblond) to predict the evolution of the metallurgical phases, accounting for volumetric changes, it remains a matter of debate as to the magnitude of the impact of phase transformations on residual stresses. Often phase transformations are neglected entirely. In this work a simple phase transformation model is applied to a range of welded structures with the specific aim of assessing the impact, or otherwise, of phase transformations on the magnitude and distribution of predicted residual stresses. The welded structures considered account for a range of geometries from a simple ferritic beam specimen to a thick section multi-pass weld. The outcome of this work is an improved understanding of the role of phase transformation on residual stresses and an appreciation of the circumstances in which it should be considered.
Databáze: OpenAIRE