Phase space of a model of magnetohydrodynamics of nonzero order
Autor: | T. G. Sukacheva, A. O. Kondyukov |
---|---|
Rok vydání: | 2017 |
Předmět: |
Physics
0209 industrial biotechnology Partial differential equation General Mathematics 010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs Motion (geometry) 02 engineering and technology 01 natural sciences Physics::Fluid Dynamics Sobolev space 020901 industrial engineering & automation Classical mechanics Phase space Ordinary differential equation Compressibility Uniqueness 0101 mathematics Magnetohydrodynamics Analysis |
Zdroj: | Differential Equations. 53:1054-1061 |
ISSN: | 1608-3083 0012-2661 |
DOI: | 10.1134/s0012266117080109 |
Popis: | We describe the phase space of the first initial–boundary value problem for a system of partial differential equations modeling the motion of an incompressible viscoelastic Kelvin–Voigt fluid of nonzero order in the Earth magnetic field. In the framework of the theory of semilinear equations of Sobolev type, we prove the existence and uniqueness of a solution that is a quasistationary semitrajectory. |
Databáze: | OpenAIRE |
Externí odkaz: |