Mechanism of Nuclear Lamina Disruption and the Role of pUS3 in Herpes Simplex Virus 1 Nuclear Egress
Autor: | Masoudeh Masoud Bahnamiri, Richard J. Roller |
---|---|
Rok vydání: | 2021 |
Předmět: |
0303 health sciences
Lamina viruses Immunology Mutant Biology Microbiology Cell biology 03 medical and health sciences 0302 clinical medicine medicine.anatomical_structure Capsid Cytoplasm Virology Insect Science medicine Nuclear lamina Nuclear membrane Nucleus 030217 neurology & neurosurgery Lamin 030304 developmental biology |
Zdroj: | Journal of Virology. 95 |
ISSN: | 1098-5514 0022-538X |
DOI: | 10.1128/jvi.02432-20 |
Popis: | Herpes simplex virus capsid envelopment at the nuclear membrane is coordinated by nuclear egress complex (NEC) proteins, pUL34 and pUL31, and is accompanied by alteration in the nuclear architecture and local disruption of nuclear lamina. Here, we examined the role of capsid envelopment in the changes of the nuclear architecture by characterizing HSV-1 recombinants that do not form capsids. Typical changes in nuclear architecture and disruption of the lamina were observed in the absence of capsids, suggesting that disruption of the nuclear lamina occurs prior to capsid envelopment. Surprisingly, in the absence of capsid envelopment, lamin A/C becomes concentrated at the nuclear envelope in a pUL34-independent and cell type-specific manner, suggesting that ongoing nuclear egress may be required for the dispersal of lamins observed in wild-type infection. Mutation of virus-encoded protein kinase, pUS3, on a wild-type virus background has been shown to cause accumulation of perinuclear enveloped capsids, formation of NEC aggregates, and exacerbated lamina disruption. We observed that mutation of US3 in the absence of capsids results in identical NEC aggregation and lamina disruption phenotypes, suggesting that they do not result from accumulation of perinuclear virions. TEM analysis revealed that, in the absence of capsids, NEC aggregates correspond to multi-folded nuclear membrane structures, suggesting that pUS3 may control NEC self-association and membrane deformation. To determine the significance of the pUS3 nuclear egress function for virus growth, the replication of single and double UL34 and US3 mutants was measured, showing that the significance of pUS3 nuclear egress function is cell-type specific.ImportanceThe nuclear lamina is an important player in infection by viruses that replicate in the nucleus. Herpesviruses alter the structure of the nuclear lamina to facilitate transport of capsids from the nucleus to the cytoplasm and use both viral and cellular effectors to disrupt the protein-protein interactions that maintain the lamina. Here we explore the role of capsid envelopment and the virus-encoded protein kinase, pUS3, in the disruption of lamina structure. We show that capsid envelopment is not necessary for the lamina disruption, or for US3 mutant phenotypes, including exaggerated lamina disruption, that accompany nuclear egress. These results clarify the mechanisms behind alteration of nuclear lamina structure and support a function for pUS3 in regulating the aggregation state of the nuclear egress machinery. |
Databáze: | OpenAIRE |
Externí odkaz: |