Integer Convolutions over the Finite Field $GF( {3 \cdot 2^n + 1} )$
Autor: | S. W. Golomb, I. S. Reed, T. K. Truong |
---|---|
Rok vydání: | 1977 |
Předmět: | |
Zdroj: | SIAM Journal on Applied Mathematics. 32:356-365 |
ISSN: | 1095-712X 0036-1399 |
DOI: | 10.1137/0132029 |
Popis: | An analogue of the discrete Fourier transform is defined in the finite field $GF( {q_n } )$, where $q_n $ is a prime of the form $3 \times 2^n + 1$. The arithmetic operations performing this transform require integer multiplication, addition, subtraction, and bit shifts of a word. It is shown that the fast Fourier transform algorithm can be utilized to yield fast convolutions of integer numbers without round-off error. |
Databáze: | OpenAIRE |
Externí odkaz: |