Integer Convolutions over the Finite Field $GF( {3 \cdot 2^n + 1} )$

Autor: S. W. Golomb, I. S. Reed, T. K. Truong
Rok vydání: 1977
Předmět:
Zdroj: SIAM Journal on Applied Mathematics. 32:356-365
ISSN: 1095-712X
0036-1399
DOI: 10.1137/0132029
Popis: An analogue of the discrete Fourier transform is defined in the finite field $GF( {q_n } )$, where $q_n $ is a prime of the form $3 \times 2^n + 1$. The arithmetic operations performing this transform require integer multiplication, addition, subtraction, and bit shifts of a word. It is shown that the fast Fourier transform algorithm can be utilized to yield fast convolutions of integer numbers without round-off error.
Databáze: OpenAIRE