Popis: |
The objective of injecting polymer in brown fields is to increase recovery beyond primary and secondary recovery mechanisms. However, generally it is difficult to achieve adequate (viscous) polymer injectivity in depleted sandstone reservoirs without fracturing. Therefore, monitoring fracture propagation is required in order to control vertical conformance and areal sweep and avoid early polymer breakthrough. Different surveillance methods are used to identify the existence and properties of fractures in polymer injectors. Pressure Fall off (PFO) survey data in conjunction with time-lapse temperature surveys are extensively used to determine the fracture dimensions. PFO tests in Polymer injectors have particular characteristics since they are influenced by shear-dependent viscosity seen in non-Newtonian fluids. A specially developed Injection Fall-off (IFO) model was used to determine fracture dimensions which is based on exact semi-analytical solution to the fully transient elliptical fluid flow equation around a closing dynamic fracture developed by Shell, (Van den Hoek 2005), as static fracture models are inadequate. This paper presents different phenomena in polymer injection seen in PFO tests such as fracture closure, the effect in-situ polymer rheology and the detection of the polymer front. The paper demonstrates the effect of liquid-level drop observed in PFO survey in under-pressured reservoirs and its impact on determining fracture and some other reservoir properties. It also shows how plot-overlays of time lapse PFO's for a particular well can be used to track changes in fracture dimensions. All of these are illustrated by a number of field examples of polymer PFO which also demonstrate the calculated fracture dimensions from the data. Finally, some recommended best practices are suggested for fracture monitoring. |