Generation of Zonal Flow and Magnetic Field by Planetary Waves in the Earth’s Ionosphere
Autor: | T. D. Kaladze, L. V. Tsamalashvili, Kh. Chargazia, Oleg Kharshiladze |
---|---|
Rok vydání: | 2016 |
Předmět: |
Physics
010504 meteorology & atmospheric sciences Electron Zonal flow (plasma) Geodesy 01 natural sciences Instability 010305 fluids & plasmas Computational physics Magnetic field Nonlinear system Wavelength Energy cascade Physics::Space Physics 0103 physical sciences Ionosphere 0105 earth and related environmental sciences |
Zdroj: | Journal of Applied Mathematics and Physics. :487-491 |
ISSN: | 2327-4379 2327-4352 |
DOI: | 10.4236/jamp.2016.42054 |
Popis: | Possibility of generation of large-scale sheared zonal flow and magnetic field by coupled under the typical ionospheric conditions short-scale planetary low-frequency waves is shown. Propagation of coupled internal-gravity-Alfven, Rossby-Khantadze, Rossby-Alfven-Khantadze and collision-less electron skin depth order drift-Alfven waves is revealed and investigated in detail. To describe the nonlinear interaction of such coupled waves with sheared zonal flow the corresponding nonlinear equations are deduced. The instability mechanism is based on the nonlinear parametric triple interaction of the finite amplitude short-scale planetary waves leading to the inverse energy cascade toward the longer wavelengths. It is shown that under such interaction intense sheared magnetic fields can be generated. Appropriate growth rates are discussed in detail. |
Databáze: | OpenAIRE |
Externí odkaz: |