Spatially and spectrally resolved cathodoluminescence with fast electrons: A tool for background subtraction in luminescence intensity second-order correlation measurements applied to subwavelength inhomogeneous diamond nanocrystals
Autor: | Mathieu Kociak, Sounderya Nagarajan, François Treussart, Sophie Meuret, Huan-Cheng Chang, Luiz H. G. Tizei, Chia-Yi Fang |
---|---|
Rok vydání: | 2013 |
Předmět: |
Photon
Photoluminescence Cathodoluminescence 02 engineering and technology engineering.material 01 natural sciences Optics 0103 physical sciences Materials Chemistry Electrical and Electronic Engineering 010306 general physics Physics Background subtraction business.industry Diamond Surfaces and Interfaces 021001 nanoscience & nanotechnology Condensed Matter Physics Surfaces Coatings and Films Electronic Optical and Magnetic Materials Wavelength Correlation function (statistical mechanics) engineering 0210 nano-technology Luminescence business |
Zdroj: | physica status solidi (a). 210:2060-2065 |
ISSN: | 1862-6300 |
DOI: | 10.1002/pssa.201300044 |
Popis: | Measurements of the photon second-order correlation function, g(2)(τ), is a common tool for the characterization of single photon emitters, like nitrogen-vacancy color centers in diamond. Such measurement requires background photoluminescence correction, which is easy when this background is homogeneous on a few wavelengths scale. However, if the sample contains emitting centers separated by a distance smaller than the optical diffraction limit, and having different and overlapping emission, these background correction techniques cannot be applied. We have recently shown that cathodoluminescence (CL) can be used to measure g(2)(τ) at the subwavelength scale. Here we propose a method, based on spatially and spectrally resolved CL, to subtract the background taking into account the nanometer spatial distribution of the emitted light. To this end, a nanometer-resolved spectrum image is acquired on the same region where the g(2)(τ) is measured. As an example, we show the use of this method to the subtraction of the H3 background signal from a g(2)(τ) measurement done on NV0 color centers. |
Databáze: | OpenAIRE |
Externí odkaz: |