Estimated changes in wind speed and wind power density over the western High Plains, 1971–2000

Autor: Matthew Chatelain, Mark L. Morrissey, J. Scott Greene, Steve Stadler
Rok vydání: 2012
Předmět:
Zdroj: Theoretical and Applied Climatology. 109:507-518
ISSN: 1434-4483
0177-798X
DOI: 10.1007/s00704-012-0596-z
Popis: This manuscript presents the results of research on the temporal patterns in wind speed and wind power density from 1971 to 2000. The study area is across the western High Plains states east of the Rocky Mountains in an area which has a proven wind power resource. Policies and economic analyses involving the rapidly expanding wind power industry have often assumed a constant in the wind resource; however, any temporal pattern or trend in wind speeds can have a meaningful impact on the reliability of wind power as an energy resource. Using data provided by the North American Regional Climate Change Assessment Program (NARCCAP) to analyze decadal and seasonal trends of wind data, this study shows that from 1971 to 2000 there were some notable changes in the NARCCAP simulated wind velocities over the study region. Wind speed trends across the central High Plains of the USA were most notable across the western portion of the study area along the higher terrain near the front range of the Rocky Mountains. The most significant changes occurred during winter and spring when a large portion of the study area experienced the most substantial decrease in wind speed, with a 20% reduction in wind power density during spring across the western portion of the study area. During summer and fall, the trends are less noticeable, with only very small changes in the summer. Fall was the only season that saw widespread increased values of wind power density from the 1970s to 1990s, with increases of nearly 10% in some southern areas of the study area. Based upon the analysis of the data and previous literature, it is theorized that these changes could be the result of changing synoptic patterns across the study region.
Databáze: OpenAIRE