On the stability of hyperbolic attractors of systems of differential equations
Autor: | Nikita Begun, J. R. Sell, V. A. Pliss |
---|---|
Rok vydání: | 2016 |
Předmět: |
Differential equation
General Mathematics 010102 general mathematics Mathematical analysis Hyperbolic function Hyperbolic manifold Stable manifold theorem Lipschitz continuity Mathematics::Geometric Topology 01 natural sciences Stable manifold 010305 fluids & plasmas 0103 physical sciences 0101 mathematics Hyperbolic partial differential equation Analysis Mathematics Hyperbolic equilibrium point |
Zdroj: | Differential Equations. 52:139-148 |
ISSN: | 1608-3083 0012-2661 |
Popis: | We study small C1-perturbations of systems of differential equations that have a weakly hyperbolic invariant set. We show that the weakly hyperbolic invariant set is stable even if the Lipschitz condition fails. |
Databáze: | OpenAIRE |
Externí odkaz: |