Semiparametric Likelihood Estimation in the Clayton–Oakes Failure Time Model

Autor: D. V. Glidden, S. G. Self
Rok vydání: 1999
Předmět:
Zdroj: Scandinavian Journal of Statistics. 26:363-372
ISSN: 1467-9469
0303-6898
DOI: 10.1111/1467-9469.00154
Popis: Multivariate failure time data arise when the sample consists of clusters and each cluster contains several possibly dependent failure times. The Clayton-Oakes model (Clayton, 1978; Oakes, 1982) for multivariate failure times characterizes the intracluster dependence parametrically but allows arbitrary specification of the marginal distributions. In this paper, we discuss estimation in the Clayton-Oakes model when the marginal distributions are modeled to follow the Cox (1972) proportional hazards regression model. Parameter estimation is based on an approximate generalized maximum likelihood estima- tor. We illustrate the model's application with example datasets.
Databáze: OpenAIRE