Semiparametric Likelihood Estimation in the Clayton–Oakes Failure Time Model
Autor: | D. V. Glidden, S. G. Self |
---|---|
Rok vydání: | 1999 |
Předmět: | |
Zdroj: | Scandinavian Journal of Statistics. 26:363-372 |
ISSN: | 1467-9469 0303-6898 |
DOI: | 10.1111/1467-9469.00154 |
Popis: | Multivariate failure time data arise when the sample consists of clusters and each cluster contains several possibly dependent failure times. The Clayton-Oakes model (Clayton, 1978; Oakes, 1982) for multivariate failure times characterizes the intracluster dependence parametrically but allows arbitrary specification of the marginal distributions. In this paper, we discuss estimation in the Clayton-Oakes model when the marginal distributions are modeled to follow the Cox (1972) proportional hazards regression model. Parameter estimation is based on an approximate generalized maximum likelihood estima- tor. We illustrate the model's application with example datasets. |
Databáze: | OpenAIRE |
Externí odkaz: |