Integral quadratic forms avoiding arithmetic progressions
Autor: | A. G. Earnest, Jiyoung Kim |
---|---|
Rok vydání: | 2020 |
Předmět: |
Combinatorics
Algebra and Number Theory Integer Quadratic form Existential quantification Diagonal Astrophysics::Instrumentation and Methods for Astrophysics Computer Science::General Literature Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) Positive-definite matrix Mathematics |
Zdroj: | International Journal of Number Theory. 16:2141-2148 |
ISSN: | 1793-7310 1793-0421 |
DOI: | 10.1142/s1793042120501109 |
Popis: | For every positive integer [Formula: see text], it is shown that there exists a positive definite diagonal quaternary integral quadratic form that represents all positive integers except for precisely those which lie in [Formula: see text] arithmetic progressions. For [Formula: see text], all forms with this property are determined. |
Databáze: | OpenAIRE |
Externí odkaz: |