THE CYCLIC AND SIMPLICIAL COHOMOLOGY OF THE BICYCLIC SEMIGROUP ALGEBRA
Autor: | Frédéric Gourdeau, Michael C. White |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | The Quarterly Journal of Mathematics. 62:607-624 |
ISSN: | 1464-3847 0033-5606 |
DOI: | 10.1093/qmath/haq014 |
Popis: | Let □ = l 1 (ℬ) be the semigroup algebra of ℬ, the bicyclic semigroup. We give a resolution of l ∞ (ℬ) which simplifies the computation of the cohomology of l 1 (ℬ) dual bimodules. We apply this to the dual module l ∞ (ℬ) and show that the simplicial cohomology groups ℋ n (□, □′) vanish for n ≥ 2. Using the Connes–Tzygan exact sequence, these results are used to show that the cyclic cohomology groups ℋ□ n (□, □′) vanish when n is odd and are one-dimensional when n is even (n ≥ 2). |
Databáze: | OpenAIRE |
Externí odkaz: |