Abstract DDT01-05: First-in-class T cell-redirecting bispecific antibody targeting glypican-3: a highly tumor-selective antigen

Autor: Takahiro Ishiguro, Werner Frings, Yuji Sano, Akihisa Kaneko, Jun-ichi Nezu, Yasuko Kinoshita, Yoko Kayukawa, Toshiaki Tsunenari, Mika Endo, Yumiko Azuma, Shun-ichiro Komatsu, Natsuki Ono, Mika Kamata-Sakurai, Hirotake Shiraiwa
Rok vydání: 2016
Předmět:
Zdroj: Cancer Research. 76:DDT01-05
ISSN: 1538-7445
0008-5472
DOI: 10.1158/1538-7445.am2016-ddt01-05
Popis: Immune checkpoint inhibitors such as anti-PD1 antibodies have shown promising clinical responses in several solid tumors, however there remain patients who do not show an adequate response. Recent biomarker studies have revealed that the presence of neoantigens in the tumor can determine the level of response, and thus the next challenge will be how to target tumors with a neoantigen level that is too low to be recognized by endogenous cytotoxic T cells. Hope in this area is offered by a T cell-redirecting antibody (TRAB), which bispecifically engages CD3 and a tumor antigen, even at very low expression levels, to activate the inherent cytolytic potential of T cells against target tumor cells. A TRAB is highly potent because T cells are activated only in the presence of the targeted antigens and are not restricted by the specificity of the T cell receptor. Given this very potent cytotoxicity, the key to successfully achieving strong antitumor efficacy while avoiding on-target off-tumor toxicity is to select a highly tumor-selective antigen. Our fully humanized IgG TRAB recognizes CD3 and a highly tumor-selective antigen, glypican-3 (GPC3), which is a fetal protein expressed in a wide variety of tissues during development but suppressed in most adult tissues. On the other hand, an inct101e in GPC3 expression has been reported in hepatocellular carcinoma, gastric cancer, lung squamous cell carcinoma, and other cancers. In nonclinical in vitro pharmacology studies, the anti-GPC3 TRAB elicited activation and proliferation of T cells and T cell-dependent cellular cytotoxicity against a wide variety of GPC3-expressing tumor cells, and showed long-lasting in vivo efficacy against tumor expressing very low levels of GPC3 at a few thousand molecules per cell. Furthermore, in an immunocompetent mouse model using human CD3 transgenic mice, anti-GPC3 TRAB showed strong antitumor efficacy against poorly immunogenic tumors, whereas both the immune checkpoint inhibitors and a conventional ADCC-inducing antibody recognizing GPC3 did not show significant efficacy. Pharmacokinetics and toxicology studies in nonhuman primates showed a plasma half-life comparable to a standard IgG drug, allowing a QW or Q2W regimen in humans, with toxicity which was manageable and reversible; the main observations of transient cytokine elevation and associated clinical symptoms were markedly reduced by steroid premedication. Our anti-GPC3 TRAB, which is supported by proprietary antibody engineering technology (ART-Ig) that enables large-scale GMP manufacturing, has promise as a new approach in cancer immunotherapy. Citation Format: Takahiro Ishiguro, Yasuko Kinoshita, Yuji Sano, Yumiko Azuma, Toshiaki Tsunenari, Natsuki Ono, Yoko Kayukawa, Mika Kamata-Sakurai, Hirotake Shiraiwa, Akihisa Kaneko, Werner Frings, Shunichiro Komatsu, Junichi Nezu, Mika Endo. First-in-class T cell-redirecting bispecific antibody targeting glypican-3: a highly tumor-selective antigen. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr DDT01-05.
Databáze: OpenAIRE