Lyapunov exponent for type-III intermittent chaos
Autor: | G.A. Ponce, O. Alvarez-Llamoza, Mario G. Cosenza |
---|---|
Rok vydání: | 2010 |
Předmět: |
Numerical Analysis
Applied Mathematics Mathematical analysis Interval (mathematics) Function (mathematics) Lyapunov exponent Type (model theory) law.invention Nonlinear Sciences::Chaotic Dynamics Nonlinear system symbols.namesake law Modeling and Simulation Intermittency symbols Critical exponent Scaling Mathematics |
Zdroj: | Communications in Nonlinear Science and Numerical Simulation. 15:2431-2435 |
ISSN: | 1007-5704 |
DOI: | 10.1016/j.cnsns.2009.09.011 |
Popis: | The behaviour of the Lyapunov exponent near the transition to chaos via type-III intermittency is numerically determined for a generic map showing this transition. A critical exponent β expressing the scaling of the Lyapunov exponent as a function of both, the reinjection probability and the nonlinearity of the map is calculated. It is found that the critical exponent varies on the interval 0 β 1 . This extends earlier predictions for the scaling behaviour of the Lyapunov exponent in type-III intermittency. |
Databáze: | OpenAIRE |
Externí odkaz: |