Force generation by protein–DNA co-condensation
Autor: | Stefan Golfier, Maria Elsner, Frank Jülicher, Thomas Quail, Vasanthanarayan Murugesan, Keisuke Ishihara, Jan Brugués, Roman Renger |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
0303 health sciences Phase transition Nucleolus Heterochromatin General Physics and Astronomy DNA condensation Chromatin 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine chemistry Transcriptional regulation Biophysics Transcription factor 030217 neurology & neurosurgery DNA 030304 developmental biology |
Zdroj: | Nature Physics. 17:1007-1012 |
ISSN: | 1745-2481 1745-2473 |
DOI: | 10.1038/s41567-021-01285-1 |
Popis: | Interactions between liquids and surfaces generate forces1,2 that are crucial for many processes in biology, physics and engineering, including the motion of insects on the surface of water3, modulation of the material properties of spider silk4 and self-assembly of microstructures5. Recent studies have shown that cells assemble biomolecular condensates via phase separation6. In the nucleus, these condensates are thought to drive transcription7, heterochromatin formation8, nucleolus assembly9 and DNA repair10. Here we show that the interaction between liquid-like condensates and DNA generates forces that might play a role in bringing distant regulatory elements of DNA together, a key step in transcriptional regulation. We combine quantitative microscopy, in vitro reconstitution, optical tweezers and theory to show that the transcription factor FoxA1 mediates the condensation of a protein–DNA phase via a mesoscopic first-order phase transition. After nucleation, co-condensation forces drive growth of this phase by pulling non-condensed DNA. Altering the tension on the DNA strand enlarges or dissolves the condensates, revealing their mechanosensitive nature. These findings show that DNA condensation mediated by transcription factors could bring distant regions of DNA into close proximity, suggesting that this physical mechanism is a possible general regulatory principle for chromatin organization that may be relevant in vivo. In vitro experiments and theory reveal that a protein associated with DNA transcription mediates condensation of a protein–DNA phase via a first-order transition. The forces uncovered in the study may contribute to chromatin remodelling in the cell. |
Databáze: | OpenAIRE |
Externí odkaz: |